21,692 research outputs found

    Field induced multiple order-by-disorder state selection in antiferromagnetic honeycomb bilayer lattice

    Get PDF
    In this paper we present a detailed study of the antiferromagnetic classical Heisenberg model on a bilayer honeycomb lattice in a highly frustrated regime in presence of a magnetic field. This study shows strong evidence of entropic order-by-disorder selection in different sectors of the magnetization curve. For antiferromagnetic couplings J1=Jx=Jp/3J_1=J_x=J_p/3, we find that at low temperatures there are two different regions in the magnetization curve selected by this mechanism with different number of soft and zero modes. These regions present broken Z2Z_2 symmetry and are separated by a not fully collinear classical plateau at M=1/2M=1/2. At higher temperatures, there is a crossover from the conventional paramagnet to a cooperative magnet. Finally, we also discuss the low temperature behavior of the system for a less frustrated region, J1=Jx<Jp/3J_1=J_x<J_p/3.Comment: revised version - accepted for publication in Physical Review B - 12 pages, 11 figure

    Estimation of unsteady aerodynamic forces using pointwise velocity data

    Full text link
    A novel method to estimate unsteady aerodynamic force coefficients from pointwise velocity measurements is presented. The methodology is based on a resolvent-based reduced-order model which requires the mean flow to obtain physical flow structures and pointwise measurement to calibrate their amplitudes. A computationally-affordable time-stepping methodology to obtain resolvent modes in non-trivial flow domains is introduced and compared to previous existing matrix-free and matrix-forming strategies. The technique is applied to the unsteady flow around an inclined square cylinder at low Reynolds number. The potential of the methodology is demonstrated through good agreement between the fluctuating pressure distribution on the cylinder and the temporal evolution of the unsteady lift and drag coefficients predicted by the model and those computed by direct numerical simulation.Comment: In revie

    Bulk viscosity and the conformal anomaly in the pion gas

    Get PDF
    We calculate the bulk viscosity of the massive pion gas within Unitarized Chiral Perturbation Theory. We obtain a low temperature peak arising from explicit conformal breaking due to the pion mass and another peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We discuss the role of resonances, heavier states and large-NcN_c counting.Comment: Revised version accepted in Phys.Rev.Lett. 4 pages, 3 figure

    Low-noise high-voltage DC power supply for nanopositioning applications

    Get PDF
    Nanopositioning techniques currently applied to characterize physical properties of materials interesting for applications at the microscopic scale rely on high-voltage electronic control circuits that should have the lowest possible noise level. Here we introduce a simple, flexible, and custom-built power supply circuit that can provide +375\,V with a noise level below 10\,ppm. The flexibility of the circuit comes from its topology based on discrete MOSFET components that can be suitable replaced in order to change the polarity as well as the output voltage and current.Comment: 3 pages, 2 figure

    Magnetization plateaux and jumps in a frustrated four-leg spin tube under a magnetic field

    Get PDF
    We study the ground state phase diagram of a frustrated spin-1/2 four-leg spin tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: analysis of low-energy effective Hamiltonian (LEH), a Hartree variational approach (HVA) and density matrix renormalization group (DMRG) for finite clusters. We find that in the limit of weakly interacting plaquettes, low-energy singlet, triplet and quintuplet states play an important role in the formation of fractional magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model. All techniques provide consistent results which allow us to predict the existence of fractional plateaux in an important region in the space of parameters of the model.Comment: 10 pages, 7 figures. Accepted for publication in Physical Review

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure
    corecore